
1336 

Acta Cryst. (1974). B30, 1336 

A Procedure for Obtaining Energy Parameters from Crystal Packing 

BY A.T. HAGLER AND S. LIFSON 

Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel 

(Received 3 January 1974; accepted 4 February 1974) 

An efficient method for deriving energy parameters from crystal packing is described. The Newton- 
Raphson approximation is used in a least-squares procedure to obtain the energy parameters. Lattice 
sums of the energy, first derivatives, and second derivatives are calculated only once for the experi- 
mental crystal structure. Thus their recalculation, which is a very time-consuming operation, is avoided. 
The method is tested on six amide crystals, and results are given. It is also shown to be applicable to 
other fields of conformational analysis. A method of energy minimization involving lattice sums of 
third derivatives, which is an extension of the Newton-Raphson approximation, is also presented. 

Introduction 

In theoretical conformational analysis a set of energy 
functions is chosen from which the equilibrium coor- 
dinates of molecules are calculated by solving the set 
of equations 

~g Vmo,/~gr~ =O (1) 

where Vmo~ is the total molecular energy, and rs are 
atomic (or internal) coordinates. Similarly, equilibrium 
structures of crystals are obtained by solving the set of 
equations 

g.=OVcrys/Oa.=O (2) 

where Vcrys is the energy of the crystal lattice and a~ are 
the components of the vector a, representing the unit- 
cell parameters and molecular coordinates necessary 
completely to describe the crystal structure. The solu- 
tion of (2) is of interest in connexion with the calcula- 
tion of molecular packing, by minimization of the 
potential energy of the crystal. This possibility, and 
the success of such calculations, are of obvious im- 
portance to the study both of intermolecular forces and 
the crystalline state. It is the subject of increasing at- 
tention, although most of the recent studies have been 
carried out by mapping the potential surface in one or 
two variables, rather than using minimization tech- 
niques to solve (2)in general (Coiro, Giglio & Quagliata, 
1972; Ahmed, Kitaigorodsky & Mirskaya, 1971; 
Giglio, 1970; Dentini, De Santis, Morosetti & Pianta- 
nida, 1972). 

The choice of energy parameters for crystal-structure 
calculations is often based on a least-squares fit of the 
calculated and experimental properties. However, the 
calculation of aeq.¢,t~, the calculated equilibrium value 
of a, is a lengthy numerical process involving a repeated 
calculation of the lattice sums,* which enter into the 
expression for the energy and its derivatives. This 
whole process must be repeated iteratively in the least- 

* We use the term lattice sum to mean a summation over all 
the atoms in the crystal lattice of some function of the dis- 
tance between atoms. 

squares optimization of the energy parameters to yield 

(acalc- aexp)2 = minimum. (3) 

The lattice sums are time-consuming and constitute 
the major part of the computing time of the calculation 
of aeq.calc. Optimization in this way is therefore a much 
too expensive computer operation. In order to avoid 
repeated calculations of lattice sums, the common 
practice (Williams, 1966; Momany, Vanderkooi & 
Scheraga, 1968; Minicozzi & Stroot, 1970) has been to 
optimize the energy parameters so as to minimize the 
squares of the calculated forces g~ at the experimental 
equilibrium structure. In other words, one seeks a set 
of energy parameters for which 

2 [g"calc(aexp)--g~exp ]2= ~ [g~calc(aexp)]2 
ix 

= minimum (4) 
(g~exp are by definition zero). 

This method avoids solving (2) and has the great 
advantage that the repeated evaluation of lattice sums 
for the energy and derivatives at the calculated crystal 
structure is avoided. Instead, the derivatives are eval- 
uated for the experimental crystal structure only. 

A second major advantage is related to certain forms 
of the potential, for which only a single evaluation of 
the lattice sums is necessary for any number of itera- 
tions in a least-squares optimization. This may best be 
seen by looking at an example. The potential Williams 
(1966) uses to describe the energy of hydrocarbons is 

2 V¢rys = Acc ~. rcc -6 + Bcc ~ exp ( -  Cccrcc) 

+ ACH ~ rCH -6 + Bcn ~ exp (--Ccnrcn) 
- - 6  +Ann ~ rnn + Bnn ~'. exp ( -  Cnnrnn) (5) 

where A~ s, Bis and Cls are energy parameters belonging 
to the two atoms i and j, and ris is the interatomic 
distance. For each iteration of a non-linear least- 
squares optimization, one needs to calculate the ob- 
servables (in this case V and certain g,), and the de- 
rivatives of the observables with respect to the energy 
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parameters. Since the energy parameters A~j and B~j 
are outside the summation, the change in energy for 
a change in any one of these parameters does not 
necessitate a recalculation of the lattice sums. The 
derivatives of the energy with respect to the crystal 
coordinates, g~, involve similar sums. Thus in a least- 
squares optimization, the values of the observables and 
their derivatives with respect to A~j and B~j may be 
calculated for any values of these parameters without a 
recalculation of the lattice sums.* Note that this con- 
dition does not hold for the constants C~j, and for this 
reason these constants had to be obtained in a different 
way (Williams, 1966). 

There is, however, a disadvantage with this method. 
This is in the implicit assumption that optimizing over 
the derivatives is equivalent to optimizing over the 
crystal structure itself. In fact it is obvious that if the 
potential is very shallow, the derivatives can be very 
small, even though the distance from the minimum 
may be large. 

We tried to apply this method to amide crystals. 
We used (4) to obtain a set of optimized energy par- 
ameters, and then used these parameters to determine 
the calculated crystal structure a~q.~a~¢ by minimizing 
the crystal energy, i.e. solving (2). We found that the 
deviations between calculated and experimental aeq 
were often rather large. It thus became apparent that 
the optimized derivatives did not lead to an optimized 
crystal structure for these crystals. This problem was 
recognized by Warshel & Lifson (1970) who actually 
solved for a,~t¢ in (3) by a Newton-Raphson mini- 
mization for hexane. They obtained the Z matrix (the 
derivatives of a,~a~¢ with respect to the parameters) 
for the least-squares optimization of (3) by a lattice- 
sums technique, and recalculated the lattice sums only 
every three to five iterations. The recalculation of lattice 
sums and the solution of (3) is too time-consuming 
for larger systems or when many crystals with more 
than one molecule per unit cell are being treated. Thus 
we were led to a modification of the previous methods. 
We follow Warshel & Lifson (1970) in abandoning (4) 
as a criterion for the set of energy parameters. Instead, 
we incorporate the crystal structure itself as a basis for 
optimization into a lattice-sums technique. In this way 
we obtain all the advantages of (4) while at the same 
time optimizing over the crystal structure and not the 
derivatives; minimization of energy is avoided there- 
fore and lattice sums are calculated only once for the 
experimental crystal geometry. 

Application of  Newton-Raphson  
method with lattice sums 

A set of linear equations may be obtained for (a.~.~ 
- a.exp), the quantity which appears in (3), by expanding 

* This is true even when the A's and B's are inter-related 
non-linearly, e.g. when it is desired to test the correlation 
A~H = AccAm~, by an iterative linearized least-squares (see e.g. 
Hamil ton ,  1964). 

the gradient at the calculated minimum energy' 
VaV(a~a~¢) = {3 V/9a~}, in a Taylor series about the ex- 
perimental coordinates 

~TaV(acalc ) = ~TaV(aexp) 4- F(aexp) (acalc- aexp) 4 - . . .  (6) 

where F(ae~p) is the matrix of second derivatives 

F(ae~p) = (~  V/?a~a,) at aexp. (7) 

The distance to the minimum is then obtained ap- 
proximately by noting that V~V(a¢.~¢)=0 and solving 
the equation 

AaNR-- (a¢al¢-- aexp) = -- F-1(aexp)V~ V(aexo). (8) 

Thus AaNR gives the Newton-Raphson approxima- 
tion to the difference between the observed coordinates 
aexp, and the calculated minimum energy coordinates 
a¢a~¢. It is exact only for a quadratic function but is a 
good approximation in the more general case, insofar 
as the Taylor series of (6) may be truncated after the 
second term, namely when the calculated minimum 
is sufficiently close to the experimental coordinates. 

Thus our proposed optimization procedure is to 
estimate acalc-aex p in (3) by (8), and solve for the 
energy parameters which satisfy the condition 

IF- l(aexp)V. V(aexp)12 = minimum. (9) 

Test of  the proposed optimization procedure 

In order to test the two measures of the differences be- 
tween calculated and experimental crystal structure 
[i.e. derivatives at minimum as in (4) or (9)] we have 
minimized the energy of six amide crystals (oxamide, 
succinamide, urea, formamide, diketopiperazine and 
t-cis-3,6-dimethyl-2,5-piperazinedione) with respect to 
the nine Cartesian components of the unit-cell vectors. 
That is, we have tested these procedures with respect 
to how unit cells pack. This was done for the potential 
(Warshel & Lifson, 1970) : 

Vcrys = ½ ~ { qj[2(rS/r,j) 9 -  3(rt)/r,j) 6] + q,qj/r,j} (10) 
0 

• 1 • ~ _[~ . a l / 2  and el and ri are where rij = 7(ri + rT), , : -  ~,=p 
constants defined for atoms of type i having the di- 

Table 1. Parameters for test potential functions 

r* (A) c(kcal mole -  1) q (electrons)~ 
H o t  3"55 0"0025 0"108 
O 4"08 0"0195 - 0"505 
N 4"06 0"0974 
C 3"62 0" 184 
HNt 1 "74 0"00568 0"329, 0"395 

t Hc and HN represent the hydrogen on carbon and on 
nitrogen, respectively. 

The following groups were defined as neutral :  C=O, N - H ,  
N-H2, and CH, ;  the charges for HN refer to H in N - H ,  and 
in NH2 respectively. The charges given along with the neu- 
trality condit ion thus determine all the charges in these mol- 
ecules. 

A C 30B - 14" 
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Table  2. Comparison o f  different measures o f  true 
distance f rom observed to calculated minimum-energy 

unit-cell parameters 
OV Aatrue 
cZatj 50 A 12 A 8 A 

kcal mole-~ A-I  zla~R cut-off cut-off cut-off 
Oxamide 
alx* -2.59 0"079 0 - 1 1 8  0"120 0.127 
aly -0"63 0.114 0 " 0 9 3  0.085 0"143 
al, - 1.09 0.016 0 " 0 1 2  0"012 -0.048 
a2~ -0"23 -0"085 -0-120 -0"114 -0"186 
azy 2"44 -0"167 -0-157 -0-155 -0-171 
a2~ -- 1 "28 0"207 0" 176 0" 176 0-189 
a3x --0"97 0"075 0 " 0 9 1  0 " 0 8 8  0"134 
asy 0-28 --0-125 -0"119 -0"119 -0.046 
a3~ 0"98 -0"009 -0"002 -0"003 0"024 

Succinamide 
alx 1"39 -0"076 -0-084 -0"090 -0-054 
aly 0"00 0"000 0"000 0"000 0"000 
a~ - 0"62 0"257 0 " 3 2 7  0 " 3 7 6  0"244 
a 2 ~ ,  - 0"00 0"000 0 " 0 0 0  0 " 0 0 0  0"000 
azy 10.85 -0"067 -0"056 -0"056 -0"054 
az~: 0"01 -0"000 -0"000 -0"000 -0"000 
Cl3x 0"33 -0 '102 -0"105 -0"102 -0"130 
a3y 0"00 - - 0 " 0 0 0  - - 0 " 0 0 0  - - 0 " 0 0 0  - - 0 " 0 0 0  
a3~ 6-10 --0"096 --0"088 -0"084 -0"095 

Urea 
al~, 2"85 -0.181 -0-106 -0"112 -0.117 
aly -0-02 -0-055 -0.029 -0.031 -0-031 
a~, -2"14 0"172 0 " 1 2 9  0 " 1 2 8  0.123 
azx 0"05 -0 '080 -0"059 -0"061 -0"062 
a2~, 2"81 -0"154 -0"075 -0-081 -0"085 
a2z 2"16 -0"173 -0"i28 -0"127 --0"121 
a3x -0"00 -0"020 -0"022 -0"022 -0"024 
asr 0"06 0"017 -0"019 0"019 -0"019 
as~ 3"07 -0"052 -0"057 -0"065 -0"055 

Formamide 
a~x - 1 "07 0"045 0 " 0 5 4  0"051  0"065 
air 0"01 0"016 0 " 0 1 1  0 " 0 1 1  0"011 
atz 3"29 0"027 0 " 0 3 0  0 " 0 2 3  0"029 
azx --0-11 --0"103 -0"100 -0"094 --0"091 
a2y -0"22 0"110 0"090 0"090 0"082 
a,.~ -0"04 0"180 0 " 1 4 6  0 " 1 4 4  0"124 
a3x -- 0"42 0" 106 0"090 0 " 0 9 5  0"066 
a3y 0"01 -0"103 -0-085 -0"082 -0-076 
a3~ 3"86 -0"285 -0"232 -0"222 -0"200 

Diketopiperazine 
al:, - 1.15 0.016 0 " 0 3 6  0.040 0-060 
aly 0"00 -0"065 -0"056 -0"055 -0"053 
atz - 3"06 0"252 0 " 2 3 6  0 " 2 3 8  0"243 
a2x - 0"04 0"067 0 " 0 5 2  0 " 0 4 7  0"020 
az~, - 0"40 0"085 0 " 0 7 5  0 " 0 7 5  0"074 
a2~ -0"00 --0"198 --0"187 --0"185 -0"186 
a3x 1"08 -0"161 -0"179 -0"183 -0"200 
a3y 0-00 0"056 0 " 0 4 8  0-047 0.046 
a3~ -5"70 -0"029 -0"030 -0"033 -0"038 

L-cis-3,6-Dimethyl-2,5-piperazinedione 
ate, 1.32 - 1.034 -0"335 -0"329 -0.300 
aly 0"36 0-196 0.074 0 " 0 6 4  0.085 
a~, - 0"64 1,097 0.270 0 " 2 5 6  0"253 
a2x 3.38 -0"378 -0"372 -0"369 -0"368 
a2y 1"90 -0"042 -0"038 -0"037 -0"083 
az~ - 1-43 -0.005 -0.054 0 " 0 6 9  0"060 
a3x -0"17 -0.068 -0.011 0 " 0 0 5  0.027 
a3y 0.00 -0.017 -0.030 -0.044 -0"031 
a3~ 0-11 0"015 -0"011 -0"021 -0"020 

* a~.~ is the x component of unit-cell vector a~ and similarly 
for a~, and a,~. 

mens ion  of  energy and  dis tance respectively,  qi is the 
par t ia l  charge  on a tom i, ri~ is the dis tance between 
a toms  i and  j ,  and  i runs  over  all a toms  in a central  
uni t  cell, j over  all the a toms  in the crystal  (except 
the a toms  of  the molecule  to which  a tom i belongs).  
The  pa ramete r s  used in this  test are given in Table  1.* 

The  latt ice sums were pe r fo rmed  over  5. uni t  cells 
in each di rect ion (i.e. the central  uni t  cell in te rac ted  
with  a total  of  124 o ther  uni t  cells). 

Since the uni t  cells in some of  these crystals  were 
quite  large we in t roduced  a cut-off  rule:  the in te rac t ion  
between any  two molecules  is neglected if  no experi-  
menta l  d is tance  r~  between an a tom i of  one molecule  
and  an a tom j of  the o ther  is smal ler  than  a predeter-  
mined  cut-off  distance.  

The  results  of  the test are presented  in Table  2. 
The first co lumn  represents  the der ivat ives  of  the energy 
wi th  respect  to the c o m p o n e n t s  of  the unit-cell  vector,  
g~, ca lcula ted at the exper imenta l  geometry .  In the 
second co lumn  of  Table  2 the app rox ima te  dis tances  
to the m i n i m u m  A a N R = - F - 1 V V  are given, as cal- 
cula ted by (8). The  th i rd  co lumn  represents  the t rue 
difference Aatrue between the ca lcula ted  and  experi-  
menta l  crystal  s tructures.  The ca lcula ted  s t ructures  
were ob ta ined  by a F le tche r -Powel l  (1963) i terat ive 
so lu t ion  of  (2). The  cut-off  for  the lat t ice sums was 
t aken  as 50 A. The  cr i ter ion for a m i n i m u m  was tha t  
all derivatives,  O Vcrys/3a~, were smaller  t han  10 -5 kcal 
m o l e -  1 A -  1 

As can  be seen f rom Table  1, the values ob ta ined  f rom 
the N e w t o n - R a p h s o n  fo rmula  app rox ima te ly  paral lel  
the t rue devia t ions ,  while there is no such cor re la t ion  
between the der ivat ives  and  the t rue deviat ions .  F o r  
example ,  the der ivat ive  ~3V/Oa2y is equal  to 10.85 in 
succ inamide  while  the co r r e spond ing  dis tance to  the 
m i n i m u m  f rom the exper imenta l  value Aa2y(=a2ycalc 
-a2yexp) is only - 0 " 0 6 7  A, while on the o ther  h a n d  
the der ivat ive in the di rect ion aaz in succ inamide  is 
only  ~ V/8alz = - 0 . 0 6 2  while Aa,, is 0.257. Thus  if  one 
were t ry ing  to find energy pa ramete r s  to fit the crystal  
s t ructure  of  succ inamide  by op t imiz ing  over  der ivat ives  
wi th  (4), one would  e r roneous ly  change  the pa ram-  
eters to reduce the der ivat ives  in the direct ion a2y, 
even t h o u g h  the m i n i m u m  geomet ry  in this  d i rect ion 
is no t  far f rom the exper imenta l  ( - 0 . 0 6 7  A). At  the 
same time, the alz d i rect ion would  be largely d i scoun ted  
by the least-squares ,  since the der ivat ive is small ,  and  
here  the calcula ted geomet ry  is off  by 0.257 A. M a n y  
other  examples  of  this type can be seen in Table  2. 

We may summar ize  the discussion as follows. 
(a) As s ta ted in the In t roduc t ion ,  (4), which  op- 

t imizes the the crystal  forces, does  not  yield an  op- 
t i m u m  crystal  s t ructure.  

(b) As seen f rom Table  2, the reason for (a) is t ha t  

* These parameters were obtained from a least-squares solu- 
tion of (9). They were derived in the initial stages of a study on 
hydrogen bonding (Hagler, Huler & Lifson, 1974), and do not 
represent the final results of that study. 
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the calculated forces (column 1) do not correlate well 
with the crystal structure (column 3). 

(c) The Newton-Raphson approximation (column 
2) does correlate well with the crystal structure and 
therefore serves as an appropriate basis for the op- 
timization of the energy parameters of intermolecular 
interactions in crystals. The details of the use of this 
procedure are given in the Appendix. 

Some comments on the use of this procedure 

Although (8) does not hold for large deviations aealc 
--aexp which might prevail initially for an arbitrary 
set of starting parameters, in practice this does not 
cause trouble. The least-squares procedure is conver- 
gent, and as the parameters become better, the devi- 
ations become smaller and (8) is valid.* 

The process is fast, since once the lattice sums have 
been stored, each iteration of the least-squares requires 
only the evaluation of (8) and the derivatives of F -  ~ V V 
with respect to the parameters. These, as can be seen 
in the Appendix, involve nothing more than some 
multiplications, and the inversion of a small matrix. 
A typical iteration in which 14 parameters were op- 
timized with the lattice constants of l l molecules as 
observables took approximately 15 s on an IBM 370- 
165. 

The calculation of the lattice sums themselves took 
approximately 20 min for 10 molecules, with a 50 A 
cut-off. Although this is a considerable amount of 
time, this calculation has only to be done once for a 
molecule. This is true even if it is desired to study 
various potentials along with these non-bond and elec- 
trostatic potentials. An example would be the study 
of various hydrogen-bond potentials with these crys- 
tals as observables. The potential could be expressed 
a s  

Vcrys = Vnonbon d + Velec + VHbon d (1 1) 
. . . .  

where V.o.bo.d + Vel~c are the same as in (10). For this case 
the whole procedure would be the same, namely (9) 
would be solved to determine the energy parameters. 
However, the derivatives of VHbo.d would be added to 
those of V.o,bo.d and V~c to obtainVV, y,, and simi- 
larly with the second derivatives to obtain F. The 
derivatives of V,o.bo,d and V~e¢ could still be obtained 
from the lattice sums. The important point i5 that 
even if the various hydrogen-bond potentials to be 
investigated were not of the correct form to be written 
in terms of lattice sums, they are short-range potentials, 
and thus would not take long to calculate. 

* It may be noticed that the difference between Aah~ and 
Aat~ is quite large for the last molecule even for the final 
parameters. This structure could not be fitted with the param- 
eters being optimized in this run. Even though they are far 
from the minimum, the values of Zlah~ still reflect the true val- 
ues Aat~ in that both are large, and of the same order of 
magnitude (unlike the derivatives). 

Use of different cut-off distances 

The question of what cut-off distance to use in packing 
analysis of crystals and conformational analysis of 
macromolecules is often raised. The 50 A used in the 
minimization here is an extreme, taken to ensure that 
no errors were introduced from the cut-off, for the 
sake of the tests performed. We have also minimized 
the energy with 8 and 12,~ cut-offs and the results 
are presented in Table 2 columns 4 and 5. It can be 
seen that with an 8 A cutoff the results differ by 0.05- 
0.08 A in many cases. The results for the 12 A cut-off 
seem satisfactory. It should be noted that we are mini- 
mizing with respect to only 9 variables and if more 
degrees of freedom (such as rotation and translation 
of the molecules within the unit cell) are included the 
effect of a small cut-offcan be larger. Thus 12 ~ would 
seem to be a minimum cut-off distance in calculations 
involving polar molecules. 

Extension of Newton-Raphson to 
include third derivatives 

We have seen that a, rue, the calculated equilibrium 
unit-cell parameters obtained by solving (2) iteratively, 
are in general quite well approximated by aNR. In other 
words, both deviations from the experimental unit-cell 
parameters,  zlatrue and ZJaNR, are in general close to 
each other. However, dimethylpiperazinedione con- 
stitutes an exception. Here the calculated crystal struc- 
ture deviates considerably from the experimental one, 
i.e. some components of Aatruc are large, e.g. 0.34, 0.27 
and 0.37 A for alx, alz and a2x respectively. Therefore 
the Taylor expansion of V V(acalc ) as written in (6) 
should not be expected to converge as fast as in the 
other cases. Consequently, ZJaNR as given by (8) may 
not be expected to give a good approximation to 
Matr,,~. This expectation is substantiated in Table 2. 

A better approximation for Aatr~ should be obtained 
by including the third derivatives in the Taylor series 
of (6), 

0 V(a)/~a~, = ~ V(ae,w)/~a ~ + ~ F~(acxp)Aa~ 
¢ 

+½- ~, G,t~(aexp)Aat~Aa~=O (12) 
py 

where G,o~ = g3 V/~a, OaoOa~. This equation can be solved 
iteratively for Aa by writing the ith iteration as 

Aa ~-- -[F~o(aexp) 
+~- ~ G,p,.(a,~p)Aa~-~[-W,,V(ae~p). (13) 

Y 

In the first iteration Aa°=0, which corresponds to (8). 
This process converges quickly, taking 12 iterations 
in dimethylpiperazinedione, and 8 iterations for ox- 
amide. 

The results of this calculation are given in Table 3, 
where it is denoted by AaTD. All calculations were 
carried out with a cut-off of 50 A, and the third deriv- 
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Table 3. Application of  third derivatives 

Aatrue (A) Aatrue--AaNa datrue-AaTD 
O x a m i d e  

at:, 0 .118  0 .039  - 0 . 0 1 5  
aty 0"093 - 0"021 0-025 
a ~  0 .012  - 0 " 0 0 4  - 0 . 0 1 2  
a2x - O. 120 - 0 .035  - 0 .015  
a2~, - O' 157 0"010 - 0 .008  
a2z O" 176 - 0"031 - 0 .002  
a3~ 0.C91 0 .016  0-012  
a3y - 0" 119 0"006 0"004 
aa~ - 0"002 0"007 0"004 

L-cis-3,6-Dimethyl-2,5-piperazinedione 
a,x -- 0.335 0.699 0.124 
aly 0.074 - 0.122 - 0.038 
at, 0.270 - 0.827 - 0' 127 
a2x -- 0"372 0"006 0"036 
azy -- 0"038 0"004 - 0"005 
a2= 0"054 0"060 0"014 
aa~ - 0"011 0"057 0"009 
aay -- 0"030 -- 0"014 - 0"005 
a3~ -0"011 -0"025 -0"014 

atives were obtained numerically from the analytical 
second derivatives. 

The first column of Table 3 gives the exact distance 
to the min imum as obtained by minimizat ion,  and 
is the same as column 3 of Table 2. The second column 
is the difference between the true distance to the mini- 
m u m  in column 1 and the Newton-Raphson  approxi- 
mation. The third gives the difference between the 
distance to the min imum as obtained from (12), AaTD, 
and the true value. The differences for dimethylpi-  
perazinedione have been reduced from as much as 0.69 
and 0-83 A for the Newton-Raphson  approximat ion 
to 0.13 A by the use of (12). In the case of oxamide 
the difference between the predicted and the true dis- 
tance to the min imum has been reduced to less than 
0.02 A in all but one direction. Equation (13) predicts the 
deviation so well that it appears to be a reliable minimi-  
zation procedure if  the AaNR components  are smaller 
than ~0.3  A. Thus it seems* that the benefits of  the 
experimental lattice-sum technique can be applied to 
minimizat ion as well. This gives considerable savings 
in time, though at the expense of space requirement 
for the storage of the many lattice sums involved in 
the third derivatives. The quanti ty Aaxo, obviously, 
may also be used in the least-squares procedure instead 
of AaNR if for some reason the process does not con- 
verge with AaNR.  Although in our experience this prob- 
lem has not occurred it is not inconceivable, and the 
use of  darD provides a viable alternative. 

Applicability to molecular conformational analysis 

In molecular conformational  analysis (see review by 
Williams, Stang & Schleyer, 1968) potential functions 

* We have only tested this procedure on the two examples 
cited here and further experience is necessary before it can be 
accepted as a standard technique.. . . . . .  

are sought which can be used to predict the equi l ibr ium 
conformations of single molecules. The optimizat ion 
of the energy parameters of  these functions is best 
derived, as in crystal packing analysis, by least-squares 
techniques. It is easily seen that the method presented 
here is directly applicable in conformational  analysis 
as well. 

The molecular energy, like the crystal energy in (5), 
is given as a sum of terms representing bond stretch- 
ing, bond-angle bending, torsional twisting, etc. Con- 
sider for example the contribution of bond stretching, 
represented usually by Jz-~Kb~(bt-bo) 2. Kb and b0 are 

b i 
constants characteristic of  a given bond type b, while 
bl are the various bond lengths of that type. In op- 
timizing the parameters Kb, one may introduce 'bond 

b 2 sums'  like Y, i, Y b,, where bt are chosen to be the 
experimental values and optimization is obtained by 
expressions of the type (9). In order to include b0 also 
in the optimization,  it is sufficient to expand the ex- 
pression (b~ - b0) 2 and treat the terms separately. Similar 
considerations are applicable to energy functions of  
bond angles, torsions etc., to the extent that the energy 
parameters may be taken out of  the 'angle sums' ,  
' torsion sums'  etc., which is usually the case. 

APPENDIX 

Use  of  Newton-Raphson  method 
in least-squares procedure 

The solution of (9), to determine energy function par- 
ameters, is almost as simple as that of  (4). An example is 
given for the potential of  (10), where the observables 
are the 9 Cartesian coordinates of  the unit-cell vectors 
of  several amides, and the parameters we wish to adjust 
are those given in Table 1. The energy must be written 
in the form of (5), 

2Very, = A n n  ~ r / ]  9 BHH . ~  r - 6  • - ,, + O l i n  ~.  r/]' 
i :-H i=-H i--H 
j-=H j - H  j = H  

+A~c ~, r~.9-B,~ ~ r - 6  ,j ,j + O n c  ~ r ~ '  
,__H,c ;- H.C ~-- H,C 
j - - c , n  ~-C,H j~ C.H 

-{- • • • -]- QHNHN ~ r~l ( n  I) 
i~ HN 
j~HN 

where 

A tj = 2q jr;'./9, Bii = 3qfl'[.i 6 and Qjj = qiqj. 

The derivatives can be written in a similar way by 
noting that 

-c~a,,t~ # -~r t#  ~a,,." (A2) 

To simplify the notat ion we focus on a specific unit- 
cell vector, al (the formula can be easily generalized). 
Since the derivatives with respect to the unit-cell vectors 
are not affected by interactions within the central unit 
cell. we can take the index / a s  going over atoms in 
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the central unit cell, and j as going over the surrounding 
unit cells, for the sums in (A2). Noting that rts varies 
with a~x only through x s - x i ,  and that xs=x°+l~ax 
+ 12a2x + laa3x, one gets 

Vcrys 9l l (xs-  xl) 
--~-al x . . . .  AH. ~ 11 i = H  Yij 

j = H  

611(x s - xt) 
-[- BHH E " 8 

i = H  r i j  
j = H  

911(xs-x~) 

QHH ~ ll(xS--X') 
t-- H r l j 3 
j = H  

- A n c  ~ 11 + • • • 
i=  H,C r u  
j = C , H  

--QHNHN ~ I'(Xs--Xi) • (A3) 
i=  HN r i j  3 
j = H N  

The second derivatives can be written similarly as 

02gcrys --AHH E 1 l ' 9x  lll2(xs-x~) (Ys-Yt)  
OalxOa2r i =  H r i j  13 

j = H  

- B n n  ~.. 8"6x lJ2 (x i - x i ) ( y s -Y~)  
lO 

i = H  r i j  
j = H  

+Q.H ~,, 3xll l2(xs--x')(Ys--Y')  
i= H I'lj 5 
j = H  

+Anc ~, l l '9×lt l2(xs-x~)(Ys-Y~) 
13 " ' "  

i=  H,C r i j  
j = C , H  (A4) 

The important equations are of course (A1), (A3) and 
(A4) which give the energy, first derivatives, and second 
derivatives in the form of constants containing the 
energy parameters to be optimized, multiplied by lat- 
tice sums. The sums in the three equations (actually 9 
equations for the derivatives and 45 for the second 
derivatives) are calculated for the experimental crystal 
geometry, and stored according to atom pairs. The 
gradient, V~V and second derivative matrix F are 
obtained for an initial set of parameters, pO, by multi- 

plying the corresponding sums by the appropriate con- 
stants. Equation (8) is then solved for the unit cells of all 
crystals included as observables in the least-squares cal- 
culation. In order to solve the least-squares problem, one 
also needs the matrix of the derivatives of the deviations 
with respect to the parameters, Z = c~(F- 1V V)/Op. These 
we obtained numerically. The iterative, linearized least- 
squares solution (Hamilton, 1964) is given for the ith 
iteration, t p i = p ~ - p  i- l ,  by 

t ip '= - [(Z'Z)-IZ'Ay] '-1 (A5) 

where the Z matrix has been defined above, and Ay 
is the vector of deviations between the experimental 
and calculated unit-cell vectors. Our proposed least- 
squares procedure, using the Newton-Raphson ap- 
proximation and (A5) to solve (9), then becomes 

tpt = [(Z 'Z)-  ~Z'(F- 1V V)] ~-1 (A6) 

and all the quantities involved in (A6) may be calcu- 
lated from lattice sums as described above. 
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